Communication to the editor

STRUCTURE OF K-41B, A NEW DIGLYCOSIDE POLYETHER ANTIBIOTIC

Sir:

Because of their coccidiostat effect in poultry and other biological activities of interest for agricultural use, new polyether antibiotics have appeared with increasing frequency in recent years. WESTLEY has suggested a classification into four groups by structure: monovalent polyether, monovalent monoglycoside polyether, divalent polyether and divalent pyrrole ether.¹⁾ However, prior to a complete structure elucidation, a more detailed classification of a potentially novel antibiotic is desirable for comparative purposes with ionophores reported in the literature.

For this purpose, ¹⁸C NMR spectroscopy is extremely useful because it provides unequivocal information about all the carbon atoms, especially ketal and acetal carbon atoms generally found in this family of antibiotics. Moreover, the ¹⁸C signal assignments of known antibiotics, even if incomplete, can be used to assess the structure of a similar unknown polyether, and the results can be used for further assignments of uncertain ¹⁸C signals. As an example, we report here that antibiotic K-41B (1) belongs to a new

Carbon type ^{b)}	1-Na	2 -Na	Carbon No. ^c)	Carbon type ^{b)}	1-Na	2- Na	Carbon No. ^{e)}
C–Me (q)	10.91 11.13 12.50 12.61 13.21 13.81 18.47* 18.75 26.31** 27.14	10.97 11.71 12.51 12.56 13.23 13.84 	6-Me ^d) 14-Me 4-Me ^d) 12-Me 28-Me [®]) 26-Me [®]) 5"-Me 5'-Me 16-Me 29-Me	O-CH((d)	61.98 67.56 72.45 74.57 74.67 74.91* 79.28 79.61 79.90 80.23*	$\begin{array}{c} 61.94\\ 67.57\\ 72.50\\ 74.61\\ 74.67\\\\ 79.39\\ 79.62\\ 79.85\\\\ 50$	C-9 C-7 C-2 C-25 C-5' C-21g ³ C-20g ³ C-11g ³ C-4''
C-CH2- (t)	23.35 24.27 25.75 27.14* 27.39 29.19 31.00 31.00* 31.35 33.29	23.26 24.25 25.91 27.38 29.24 30.99 31.27 33.30	$\begin{array}{c} C-19^{f}) \\ C-23^{f}) \\ C-18^{f}) \\ C-3^{\prime\prime} \\ C-3^{\prime\prime} \\ C-2^{f}) \\ C-2^{\prime} \\ C-2^{\prime\prime} \\ C-10^{f}) \\ C-8^{f}) \end{array}$	O-C< (s)	80.59 81.08 82.95 84.33 86.89 93.25** 78.79 84.33**	80.59 81.12 82.93 83.79 86.90 94.87 78.77 83.69	C-4′ C-24′g) C-27 C-17 C-5 C-15 C-6 C-16
C-CH〈 (d)	37.22 39.34 39.78 46.52 48.22	37.04 39.39 39.80 46.44 48.24	C-12 C-4 C-26 C-14 C-28	O > CH- (d) O > C <	102.96 103.76* 98.79 99.72 106.63**	98.87 99.76	C-1" C-29 C-3
O-Me (q)	50.90 56.22 56.43* 59.45 60.77	50.92 56.20 59.40 60.77 59.86*	6-OMe 4'-OMe 4''-OMe 11-OMe 5-OMe 15-OMe	(s) O=C((s)	179.69	179.77	C-1

Table 1. ¹³C Chemical shifts of sodium salts of K-41B (1-Na) and K-41A (2-Na)^a)

^{a)} ¹³C NMR spectra were recorded on a Varian XL-100-12A spectrometer at 25.16 MHz in the FT mode using C₆D₆ solutions (*ca.* 0.25 mmol cm⁻³) at 35°C; accuracies of values are ±0.05 ppm. Complete signal assignments of the other compounds examined here will be published elsewhere.
 ^{b)} Signal multiplicities were obtained by ¹H single-frequency off-resonance decoupling spectra.

^{e)} Primed and double primed numbers are carbons of O-Deo at C-27 and C-15, respectively.

^{d~g)} Tentatively assigned and may be interchanged.

THE JOURNAL OF ANTIBIOTICS

class of polyether type antibiotics which should be added to WESTLEY's classification.

Antibiotic K-41B was isolated as a minor component from the mother liquor of K-41A (formerly called K-41)²) (2), which had been produced by a strain of *Streptomyces hygroscopicus*. The antibiotic was purified as a sodium salt (1-Na), m.p. $185 \sim 186^{\circ}$ C (decomp.), $[\alpha]_{D}^{20}$ +4.3°C (MeOH). Like 2, it is active against Gram-positive bacteria. The IR and ¹H NMR spectra of K41B-Na are shown in Figs. 1 and 2.

Table 1 shows all ¹³C signals of 1-Na and K-41A-Na (2-Na), whose structure has been established by an X-ray analysis.⁸) The ¹³C signals of 2-Na were assigned by making reference to the ¹³C spectra of A-28695-Na⁴ (septamycin)⁵) (3-Na), A-204A-Na⁶ (4-Na), K-41A-K (2-K), and the following derivatives of 2: a lactone (5) obtained by the Pb(OAc)₄ cleavage of 2; an alcohol (6-Na) produced by acid fission of the deoxysugar (Deo) moiety; and a methyl ether (7-Na) prepared by methylation in an acidic methanol solution. Some signals of 3-Na and 4-Na were assigned by ¹H single-frequency selective decouplings because their ¹H signals had been analyzed previously by ANTEUNIS and his coworkers.⁷⁾

The spectrum of 5 confirmed the C-1 ~ C-4, and C-7 signal assignments in 2-Na, and the spectrum of 7-Na verified the C-29 and 29-Me signal assignments. The signals due to Deo as well as C-25 ~ C-28, and 26- and 28-Me in 2-Na were easily assigned by comparison with those of 3-Na and 6-Na in which signals due to Deo disappear. The spectra of 3-Na and 4-Na differentiated the C-5 and C-6 signals. As a matter of course, two singlets at δ 107.16 and 83.69 were determined to be due to C-13 and C-16,

respectively. The doublet at δ 94.87 appears at an abnormally low field to assign to a carbon bearing one oxygen. However, it can be reasonably assigned to C-15 because this signal is also found in antibiotics such as 3-Na, 4-Na, and carriomycin,⁸ which commonly have the same spiro-ring moiety as that of 2-Na, but not in nigericin⁹ which has no 15-OR.

The assignments of the five OMe signals were straightforward. Compounds 3-Na, 4-Na, and 6-Na lack 6-, 5-, 4'-OMe, respectively. In the spectra of 2-K, the OMe signal at δ 59.40 was shifted upfield to 57.58, whereas the other four remained unchanged. X-Ray analysis³ showed that the 11-OMe group is arranged near the Na atom, and therefore the shifted signal should be assigned to 11-OMe. A similar shift was observed between the spectra of K and Na salts of nigericin, which also have an 11-OMe interacting with the metal. Thus, the remaining signal at δ 59.86, absent in the spectrum of 1-Na must arise from 15-OMe.

As seen from Table 1, the ¹³C signals of 1-Na essentially correspond to those of 2-Na, but 1-Na has seven additional signals (* in Table 1) assignable to the second Deo moiety. Since 1-Na lacks the 15-OMe signal, O-Deo is likely

to be situated at C-15^r_a instead of the OMe group. This is supported by the slightly shifted signals (** in Table 1) of C-13, C-16, 16-Me, and C-15. The other signals which shifted, δ 83.79 \rightarrow 84.33 and 11.72 \rightarrow 11.13, can be reasonably attributed to C-17 and 14-Me, respectively.

Thus, the structure of K-41B-Na was concluded to be 1-Na, and its elemental analysis agreed well with $C_{54}H_{91}O_{20}Na$. K-41B is the first example of a monovalent diglycoside polyether and the first known polyether antibiotic having eight rings in a molecule. The molecular weight of K-41B (1061.28) is the largest of this family.

The authors are much indebted to Dr. R. L. HAMILL of the Lilly Research Laboratories for the samples of 3-Na and 4-Na.

NAOKI TSUJI* KAZUO NAGASHIMA YOSHIHIRO TERUI KAZUO TORI Shionogi Research Laboratory Shionogi & Co., Ltd. Fukushima-ku, Osaka, 553 Japan

(Received November 27, 1978)

References

- WESTLEY, J. W.: Polyether antibiotics: Versatile carboxylic ionophores produced by streptomyces. Adv. Appl. Microbiol. 22: 177~223, 1977
- TSUJI, N.; K. NAGASHIMA, M. KOBAYASHI, Y. WAKISAKA, S. KŌZUKI & M. MAYAMA: Two new antibiotics, A-218 and K-41. Isolation and characterization. J. Antibiotics 29: 10~ 14, 1976
- SHIRO, M.; H. NAKAI, K. NAGASHIMA & N. TSUJI: X-Ray determination of the structure of the polyether antibiotic K-41. J. Chem. Soc., Chem. Comm. 1978: 682~683, 1978
- 4) Eli Lilly Co., Ltd.: U.S. Patent, 3,839,560, 1974
- PETCHER, T. J. & H.-P. WEBER: X-Ray crystal structure and absolute configuration of *p*bromophenacylseptamycin monohydrate, a polyether antibiotic. J. Chem. Soc., Chem. Comm. 1974: 697~698, 1974

- 6) JONES, N. D.; M. O. CHANEY, J. W. CHAMBER-LIN, R. L. HAMILL & S. CHEN: Structure of A 204A, a new polyether antibiotic. J. Am. Chem. Soc. 95: 3399~3400, 1973
- RODIOS, N. A. & M. J. O. ANTEUNIS: Solution conformation of septamycin and its sodium salt. J. Antibiotics 31: 294~301, 1978 ANTEUNIS, M. J. O. & G. VERHEGGE: Solution conformation of the ionophore A 204A Na⁺salt. Bull. Chim. Belg. 86: 353~366, 1977
- IMADA, A.; Y. NOZAKI, T. HASEGAWA, E. MIZUTA, S. IGARASI & M. YONEDA: Carriomycin, a new polyether antibiotic produced by *Streptomyces hygroscopicus*. J. Antibiotics 31: 7~14, 1978
- 9) STEINRAUF, L. K.; M. PINKERTON & J. W. CHAMBERLIN: The structure of nigericin. Biochem. Biophys. Res. Comm. 33: 29~31, 1968
 SHIRO, M. & H. KOYAMA: Crystal structure of silver polyetherin A. J. Chem. Soc. (B) 1970: 243~253, 1970